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' FORMATION OF A GAS BUBBLE ON A VIBRATING CAPILLARY
IMMERSED IN A LIQUID

I. S. Grachev, D. T. Kokorev,* UDC 532.529.6
and V. F. Yudaev

The formation of a train of bubbles in a low-viscosity liquid is investigated. The
dependence of the gas flow rate during formation of the bubble train on the vibra-
tional acceleration of the capillary is determined.

One of the techniques used to intensify mass transfer at a liquid—gas or liquid—liquid
interface is to disperse ocne of the phases by means of a vibrating nozzle or macrocapillary
(bubbling, dispersion, etc.). This technique enables one to control the particle size of the
dispersed phase over a wide range and to increase the relative velocity of the interacting
phases. In the present study we attempt to formulate a fluid-mechanical description of the
formation of a single gas bubble on a vibrating macrocapillary immersed in a liquid.

To derive the bubble-growth equation we assume that: 1) the surface-tension forces im-
part a spherical shape to the bubble; 2) prior to breakoff the bubble remains rigidly con-
nected to the capillary, which vibrates in a vertical plane according to a harmonic law. 1In
the direction of the vertical axis, therefore, the center of the growing bubble is simulta-
neously involved in two motions, one reciprocating Asinwt and the other translational R(t)
due to its own growth (Fig. la), such that

z = R({)+ Asinwt. 1)
The velocity of the center of the bubble is
U= % _ EIS———{—Aa)cosmt. (2)
dt dt

The velocity potential of the liquid surrounding the growing spherical bubble is written as
follows [1]:

*Deceased.
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Fig. 1. Diagram for derivation of the growth equa-
tion for a spherical bubble on a vertically vibrat-
ing capillary (a), bubble-train formation (b),

and illustration of buddble formation in a train (¢).

=— e cos O, (3)
r df 2r2

We use the Bernoulli equation and determine the pressure at an arbitrary point of the
liquid:

2
___:__(___J ._J%.+ Pa + g(h— Asinot — x). (4)

In calculating (8(15/81:)}{,y it must be borne in mind that

99 =~g-sin@; (_af. ="—U cos O. (5)
ot x4 ot Xy

ot

The absolute velocity q of the liquid is given by the expression

2 / 2
g = o0 ) X oD ) ' (6)
rd® dr
We find the pressure exerted by the liquid on the surface of the bubble:
3 d*R dR dU \  cos©
= — -{3U -+ :
2 ) dr T< a TRy ) 2

(19 cos*© —7) +

% (h — Asin of—x). e

The bubble is therefore acted upon by a lifting force
nh
Fp=— { 2nR*Pgsin © cos 0.d0. (8)
J
From Eqs. (7) and (8) we obtain

3
F‘D _—_—iﬂR?‘g_E ﬂﬁ.UY_R_l .
R 3 i

(9)

Two other forces besides Fp act on the bubble:

1) viscous drag
F, = 6a,RU; (10)
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2) the force binding the bubble to the capillary

F;=2aR0. (11)

The growing bubble obeys the relation

Fp=F,+F, 4 (12)

Substituting expressions (9), (10), and (11) into (12), we obtain the total differential equa-
tion

d*R 3 ({dR \?* 3 3u dR 3Ro 9 : . .
- +—7€ (—E?—) ﬁ—js (Amcosmt+— Ro ) dt + pé%—~+——7%;-Amcosmt—-A@2mnwt——2g—-O,(13)

which describes the growth of a spherical bubble on a vertically vibrating capillary immersed
~in a liquid. The solution of Eq. (13) makes it possible to determine the bubble radius R(t),
the contact surface S(t) of the phases, the rate of change dS(t)/dt of that surface, and the
relative velocity U of the phases at any time during growth of the bubble.

In a special case we consider the breakoff of the bubble from the capillary, at which
time it ceases to grow, i.e.,

dR d?R
= a, {= T, ——— 0; = 0.
R=a dt de?
Equation (13) takes the form
———iggi ——%:2— Ao cos 0T + Ae’sinoT -+ 2g=0. (14)

According to the data of [2], the breakoff of a bubble from a vibrating capillary im-
mersed in a low-viscosity liquid takes place at the instant that the capillary moves from
the uppermost point of its motion to static equilibrium with the vibration phase

(0T=(4k+1)g— (k=0,1,2 ...) (15)
~ Substituting the breakoff condition (15) into Eq. (14), we obtain

0= — RO (16)
P (2¢ + Aw?)

If, all other conditions being equal, the capillary is at rest, we readily discern that

= SR (17)
20g
Dividing (17) by (16), we have
a3 'VO Aw?
= — = —_— 18

in agreement with the results obtained in [2] for a spherical bubble.

Tn addition to the three main observable regimes of bubble formation [2] (nonsteady bub-
ble shape, fan-spraying of the gas, and steady bubble shape), there is a transition regime
from a nonsteady bubble shape to fan-spraying of the gas; this regime is called bubble-train
formation. In the latter (Fig. 1b) we observe the continuous formation of bubbles, each one
moving in the wake of the one preceding it and separated therefrom by a film of the liquid
phase. We now determine the relationship between the main parameters-of the investigated
system in the transition (bubble-train) regime. A spherical bubble formed in a low-viscosity
liquid breaks off at the instant that the capillary is situated at the uppermost point of-its
path (15), so that its radius is determined by expression (16). The motion of a bubble in a
low-viscosity liquid is described by the equation [3]
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Fig. 2. Relative gas flow rate during bub-
ble~-train formation versus amplitude and
frequency of vibrating capillary. 1) The-
oretical relation (25); 2) experimental at
20 Hz; 3) same at 40 Hz; 4) 60; 5) 80; 6)
100; 7) 120; 8) 140; 9) 160 Hz.

d%x
dt?

which under the initial conditions

has the solution
x = gi2,

The distance from the tip of the capillary to the base of the detached bubble at time t is
equal to (Fig. le)

z=x- Asinaf = gf* 4 Asinet. (19)

The condition for formation of a bubble train (Fig. 1b) is

z=29a for {=T, (20)

which must be satisfied together with the bubble breakoff condition (15). From (19), (15),
and (20) we obtain

__&r
a=——. (21)

Assuming that the gas flow rate in the bubble-train regime is constant, we have

—gﬁ na® = QT. (22)

Solving the system (16), (21), (22) for Q, we find

5
6

_ 8n’g 3R,0
= [p(2g+Am2) ] ' @
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For Aw = 0 (capillary at rest)

5
6

8n*g [ 3Rwo )
= e A . 24
©="3 ( 208 28

Dividing (24) by (23), we finally obtain

&=(1+_‘;‘§)6. (25)

The latter expression shows that when a capillary having a given radius is set into
vibration a train of gas bubbles begins to form at much lower gas flow rates. The solution
(25) is supported by experimental data obtained on an apparatus described and illustrated
in [2]. Air and distilled water were used for the gas and liquid. A comparison of the the-
oretical and experimental data (Fig. 2) shows that the model of a "rigid" spherical bubble
can be used under the given conditions in the frequency interval from 20 to 80 Hz (curves
2-5). At other frequencies we observe qualitative agreement in the process of formation of
gas bubbles on a capillary immersed in a liquid and executing vertical harmonic vibratioms.

NOTATION

A, w, amplitude and cyclic frequency of capillary vibrations; t, time; R, variable ra-
dius of growing bubble; z, coordinate of bubble center; U, velocity of bubble center; 9,
velocity potential of liquid; r, ¢, spherical coordinates; P,, pressure of liquid at point
with radius-vector r; Pp, atmospheric pressure; p, density of liquid; q, absolute velocity
of liquid; h, immersion depth of capillary at equilibrium position; x, y, coordinates of
fixed reference system; Fp, lift force on bubble; Fy, viscous drag force; Fy, bubble—capil-
lary binding force; u, dynamic viscosity coefficient; ¢, surface-tension coefficient; Re,
radius of vibrating capillary; g, acceleration of gravity; T, bubble-formation period; a,
do, radii of detached bubble for vibrating and nonmoving capillaries; V, Vo, volumes of
detached bubble for vibrating and nonmoving capillaries; Q, Qo, gas flow rates through
vibrating and nonmoving capillaries, '
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